Showing posts with label Internet of Things testing. Show all posts
Showing posts with label Internet of Things testing. Show all posts

Tuesday, 30 June 2020

Why your IoT Systems Need Security Testing?



The Internet of Things or IoT has swept the realm of technology and become mainstream as far as automation is concerned. Its popularity is attributable to features such as communication between machines, easy usage, and the integration of various devices, enabling technologies, and protocols.
When one talks about smart cities, smart transport, smart healthcare, or smart homes, the role of IoT is paramount.  According to Gartner, the number of connected things courtesy IoT is projected to reach 20.8 billion by 2020. Since IoT is about connected products that communicate with each other and share a huge volume of data, it is vulnerable to security breaches. With greater digitization and a rush towards delivering smart devices to add more comfort to people’s lives, businesses may end up keeping their flanks uncovered. The threats related to cybersecurity, besides threatening the smooth functioning of the digital ecosystem, are putting a question mark on the implementation of the IoT ecosystem.
The future is likely to be driven by smart systems with IoT at their core. Since such systems will witness a huge exchange of data, their security needs to be ensured. Also, as the smooth functioning of such smart systems will hinge on the accuracy and integrity of data, enabling IoT security at every step of the way should be the norm. If statistics are to be believed then around 84% of companies adopting IoT have reported security breaches of some kind (Source: Stoodnt.com.) The resident vulnerabilities in such systems are exploited by cybercriminals to exhibit malicious behavior such as committing credit card theft, phishing and spamming, distributed denial of service attacks, and malware distribution, among others.
How to conduct IoT security testing effectively
The security implications of a vulnerable or broken IoT system can be catastrophic for individuals, businesses, and entities. The devices and the transfer of data within them should be monitored by the implementing agency to check for a data breach. The best ways to conduct IoT security is as follow:
Checking of endpoints: As more devices or endpoints are added to expand the network, more vulnerabilities are created. Since IoT systems are built using devices of different configurations, computing and storage power, and running on different versions and types of operating systems, every such device should be evaluated for safety. An inventory of such devices should be made and tracked.
Authentication: Care should be taken that the vendor-supplied default passwords for specific systems should be dealt with at the beginning. If not, these can be exploited by hackers to take control of the IoT ecosystem and wreak havoc. Moreover, every device in the IoT system should be authenticated before being plugged into the network. This should be made an integral part of the internet of things testing.
Firewalls: The firewall present in the network should be tested for its capability of filtering specific data range and controlling traffic. Also, data aimed at terminating the device to ensure its optimal performance should be tested.
Encryption: Since IoT systems transmit data among themselves they should be encrypted for safety. During testing IoT applications the encryption approach and nitty-gritty should be thoroughly checked and validated. If not, then while relaying the location of assets in the IoT system, the information can be easily read by a hacker.
Compliance: Mere testing of IoT devices is not complete unless compliance with standards like FCC and ETSI/CE is carried out. These regulations and standards have been instituted to validate the performance of the IoT devices based on certain parameters. So, any IoT testing approach should take into account compliance with such regulations.

Why IoT systems should undergo security testing?
The smart devices forming part of the IoT system need to undergo IoT testing (security) to:
Prevent data theft: The unsecured endpoints within the system can leave a trail for hackers to strike but for the IoT device testing solutions. The vulnerabilities can be used to break into the controlling mechanism of the system in order to launch more malicious forms of attacks.
Protect brand equity: When scores of companies are competing with each other to get a pie of the IoT market, a security breach or malware attack can put a brand in jeopardy. With IoT penetration testing, such attacks can be pre-empted with the elimination of vulnerabilities and glitches.

Conclusion
The IoT ecosystem is projected to grow at a humongous pace and scale. Technology companies having an integrated IoT security testing approach are likely to earn a huge chunk of the pie. The approach when executed at regular intervals should be able to help enterprises achieve growth across domains.  

Wednesday, 19 February 2020

How can IoT Testing be improved with the right framework



With digital technology driving the world and making the lives of people easier than ever before, the quest is for making it more decentralized, distributed, and easy to handle. This is where the Internet of Things (IoT) comes across as a technology of the future. It entails changing the lives of people by taking computing to the physical realm. This may include devices, buildings, vehicles, sensors, electronics, and networks, among others. Even though IoT brings many benefits including increased automation of tasks, running such interconnected devices flawlessly can be a challenge. This is due to the heterogeneity of such devices and their need to display coordinated behavior in real-time. So, let us first understand what IoT is all about?
What is IoT?
Here, physical elements comprising buildings, vehicles, home appliances, and other elements are embedded with software, electronics, and sensors to exchange data and information over the internet. These devices are increasingly adopted by the industry to derive a range of benefits. It may include cost reduction and increased revenue generation through automated operations and improved efficiency. The speed of adoption of such devices is driven by various factors such as increased bandwidth and processing power, a growing pool of tech-savvy consumers, the advent of new analytical tools, and the low cost of sensors. Given the competitive nature of today’s business environment, enterprises are looking to generate greater revenues and deliver better customer experiences.
However, notwithstanding the slew of benefits such devices bring to the consumers, building them in the form of a network remains a challenging and complex activity. Since such devices have interfaces with a lot of digital elements, there can be issues of interoperability, security, scalability, coordination, and conformation. Nevertheless, IoT is on its way to become arguably the biggest opportunity for software development and testing. The IoT ecosystem will have an eclectic amalgamation of products like home appliances, embedded sensors, buildings, vehicles, and actuators, among other things. To enable the smooth functioning of such an ecosystem, IoT testing has become a critical requirement of the industry. If statistics are to be believed, then by 2020, around 30 billion products might become a part of the IoT ecosystem (Source: McKinsey.)
What are the benefits of IoT testing?
The importance of IoT-enabled devices in the digital ecosystem meant these have to be tested rigorously to gain a slew of benefits. These include
·         Making the business future-proof in terms of interoperability, adoption of technologies, scalability, security, and other parameters
·         Delivering the best user experiences across channels through automation
·         Delivering quicker access to the markets using test automation
What are the challenges for testing IoT applications?
The testing of IoT-enabled devices entails many challenges due to the presence of diverse devices and the need for their seamless coordination and collaboration. The other challenges are:
·         Dealing with the diversity of elements comprising the IoT ecosystem
·         Ensuring high security for data transmission
·         Adhering to a slew of IoT protocols viz., CoAP, XMPP, MQTT, and others
·         Achieving quick responsiveness in real-time
·         Support for scalability and interoperability
Developing the right framework for Internet of Things testing
To overcome the challenges associated with IoT device testing, a robust IoT testing framework should be put in place. Although designing such a framework would depend on the configurations of specific IoT devices to be tested, it should have some basic features.
Data Recorders: These can help in validating various IoT-enabled devices vis-a-vis their compatibility across communication layers.
Protocol Simulators: The IoT testing methodology involves working with many protocols. Protocol simulators can facilitate IoT testing when there are multiple interfaces of devices and their end-points.
Building Labs: These can help in simulating real-time experiences and deriving suitable inferences in the process.
Virtualization: Any real-time validation of the highly complex IoT application can be challenging and time-consuming. Thus, to reduce the dependency on a real-time environment, certain testing services or parameters can be virtualized. 
Any IoT testing framework should comprise a series of tests to check various layers and their interaction with each other.
Application layer: Functional testing, compatibility testing, usability and user experience testing, localization testing, and API testing.
Services layer: Interoperability testing, functional testing, and API testing.
Gateway and Network layer: Network compatibility and connectivity testing.
Sensor layer: Functional and security testing

Conclusion
The Internet of Things is going to drive the future and will have an eclectic mix of devices/elements such as datacentre, sensors, applications, and networks. Since a lot would be at stake based on the correct behavior of IoT-enabled devices, the IoT testing approach should be all-encompassing and rigorous. Hence, developing the right framework for testing IoT-enabled devices should be the priority, which in turn can ensure these devices to remain programmable, communicable, and operable across the industry.